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ABSTRACT 

The usage of MultiSpectral and HyperSpectral Imaging (MSI and HSI) has developed a lot during the last 

decades. The development is possible due to the quantity of information contained in the spectral bands. 

Hyperspectral imaging, with its combination of spatial and spectral aspects, allows the localization of 

materials in a geographical area. The main uses of HSI are pixel classification in remote sensing, especially 

for the discrimination of multiple types of materials. However, the operational contribution of this kind of 

data has never been proceeded in frame of airborne surveillance due to weak resolution of the imagery, the 

heterogeneity of the information…. 

We have carried out the acquisition of hyperspectral images of vehicles at different conditions, in the visible 

and very-near infrared (400-1000nm) spectral domains. We conducted a pre-study aiming at dimensioning 

the use of neural networks by using a simple neural network on the acquired hyperspectral dataset with 

airborne acquisition conditions. 

After segmentation / labelization of data to define the different classes, we have conducted an analysis on the 

neural network parameters after the training process to understand the criteria used for detection / 

classification. We run part of the layers on every pixel of every training image. 

The network resulted on 55% accuracy for vehicle detection and 30% for vehicle classification with 

improvement of only a few percents when adding spatial information. The network weights analysis showed 

that the characteristics learned during training were limited to the average quantity of light in the scene and 

vegetation. 

We concluded that the visible and very-near infrared spectral domains were limited for the spectral analysis 

of vehicles. In future work, we will focus on the study of vehicles and surveillance materials in the near and 

short-wave infrared (1000-2500nm) domains. 

We have also observed that calibration and external acquisition conditions have a major role for the quality 

of the information. Future works have to be focused on the topic to improve hyperspectral images 
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proceeding, identification and classification of materials and objects. 

Finally, for future works, using more complex network architecture permitting to analyze simultaneously 

spatial and spectral contribution in hyperspectral image classification would allow the extraction of new 

information and possibly make it comparable to state-of-the-art color image segmentation, which benefit 

highly from spatial information. 

1.0 INTRODUCTION 

The usage of MultiSpectral and HyperSpectral Imaging (MSI or HSI) has developed a lot during the last 

decades [1–6]. This development is possible due to the quantity of information contained in the spectral 

bands. This information, benefiting from a more precise decomposition of wavelengths, allows both the 

detection of problems that are imperceptible with other imaging methods and an easier isolation of 

anomalies. The first large-scale use of this decomposition was in 1972 with the launch of the Landsat 1 

satellite boarded with a multispectral sensor using four bands: one green, one red, two Near-InfraRed (NIR)1 

[3]. This satellite allowed the acquisition of multispectral data over large areas for the first time. The 

conducted analyses, particularly on land masses and environment [1, 7], demonstrated the appeal of using 

MSI. Since the launch of Landsat 1, sensors have developed and some are now able to acquire hundreds of 

bands simultaneously, resulting in hyperspectral imaging. 

As of today, the main uses of HSI are pixel classification in remote sensing, especially for the discrimination 

of multiple types of materials [3, 18], and medicine [4, 8]. Research is also done in other fields [6], such as 

tracking and face recognition [9–11]. In [12], the 30 spectral bands of a hyperspectral video are interpolated 

to restore other bands and frames of the video. In [13], HSI is used to differentiate multiple inks with visually 

similar colors and much better classification results are obtained than using color (RGB) images of these 

inks. 

However, one of the main obstacles to the use of HSI is the curse of dimensionality. The high dimensionality 

of HSI heavily increases the number of data to analyze and the computing time. Some methods tackle this 

issue by empirically removing bands [11, 14, 15] and others by extracting features [2, 3, 16, 17]. However, 

despite the lesser relevance of the lost information, such as the least used bands in a given classification task, 

this still leads to decreases in the performances. For this reason, despite a higher cost in time and processed 

data, other methods use this abundance of information to increase their classification accuracy [18, 19]. 

These methods mostly use neural networks, which are less impacted by the curse of dimensionality. 

Works on neural networks began in 1943 [20], but their popularity increased a lot since the late 90s with [21] 

and especially this last decade with AlexNet [22], substituting the very popular support vector machines. 

These gains in popularity are partly due to the arrival of high computing power, optimization techniques, and 

the availability of numerous and large datasets. 

Well-known types of neural networks are Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN). CNNs use convolutional layers to consider local information rather than only global 

information. The use of this local information, especially present in natural images, allows the extraction of 

contours, shapes, and other features [23, 24] in neural networks as would be possible with non-neural 

descriptors like in [25]. RNNs see their input data as sequences of smaller pieces of data and, as the sequence 

is being processed, memorize information from the earlier data of the sequence to improve the results on the 

later data. Uses of RNNs include mostly temporal data, more specifically speech [26] and video processing 

[27–29]. From the combination of both of these networks emerged the CRNNs [30, 31], which benefit from 

the advantages of both CNNs and RNNs. 

1 https://landsat.gsfc.nasa.gov/satellites/landsat-1/, last visited 2022-04-25. 

https://landsat.gsfc.nasa.gov/satellites/landsat-1/
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Hyperspectral image classification has been addressed with a multitude of trends. Until a few years ago, 

approaches mostly used Support Vector Machines [32–35] which then evolved into comparison methods 

with the arrival of neural networks. The prospects of using neural networks to classify hyperspectral images 

are high since very little is known about the features to extract from hyperspectral images. Some of the most 

used deep learning approaches to hyperspectral imaging are CNNs [6, 17], which benefit greatly from the 

spatial dimensions of HSI, and RNNs [6, 18, 19], processing the spectral bands as a sequence of data. Some 

approaches also use CRNNs [17, 18, 36], benefiting from both local spatial information and sequential 

spectral information. 

If HSI has already been used for tracking in [9], little research has been done about HSI in surveillance. 

Furthermore, despite its popular use for material discrimination in remote sensing [17, 18, 32, 33], to our 

knowledge, no research has been done on material discrimination for non-remote sensing applications. In 

this work, we present three major contributions. First, we design a spectral neural network to extract spectral 

information from hyperspectral images. Second, after creating and labeling a database of non-remote sensing 

hyperspectral images of vehicles, we classify these types of vehicles through the designed neural network. 

Finally, we analyze the networks to extract the most effective features used for the classification. 

This paper is organized as follows. Section 2 explains the structure of our network and its parameters. In 

section 3, we describe the camera we used and the acquisition process. The pre-processing and labeling of 

the acquired data are explained in section 4. These labeled data are then used in multiple models of the 

previously described neural network in section 5 and these models are compared with each other. In section 

6, analyses are conducted on three models of the neural network. To conclude, a short discussion about this 

work and further developments is presented in section 7. 

2.0 NEURAL NETWORK 

2.1 Spectral neural network 

The spatial correlation of images is being widely studied and a lot of methods [25, 37, 38], including 

convolutional neural networks [21, 23, 39], have already been developed to benefit from spatial information. 

For this reason, in this paper, we focus our study on the spectral correlation of the images. 

The designed network, our “spectral neural network”, is a fully-connected dense neural network. A multi-

class version of our network, in which three labels Background, Car, and Truck are considered, is depicted in 

fig. 1. Our network consists of two layers, i.e. one intermediate and one output layer. A single layer is not 

enough to draw out the full advantage of the non-linearity of neural networks. However, adding more layers, 

despite being able to extract deeper features, increases the chances of the network overfitting due to the small 

size of the input data. The spectral information of each spatial pixel is given as an input to the network. This 

information is then processed through the two layers of the network and the output of the network is the class 

calculated by the network for the input pixel. For an input hyperspectral image, of which the structure is 

described in section 3, the network is applied to all spatial pixels of this image. This results in a 2D image 

that has the size of the spatial dimensions of the input image, in which the value of each pixel is one of the 

three defined classes. 



Evaluation of the Operational Contribution of the Use of Neural Networks on 
Hyperspectral Images for the Benefit of Airborne Surveillance 

12 - 4 STO-MP-SET-312

Figure 1: Pixel-by-pixel processing of a hyperspectral image through our spectral neural 
network. 

2.2 Models and parameters 

In these experiments, from 400 labeled images, 350 images (87.5%) were chosen for the training set and 50 

images (12.5%) for the validation set, containing 200*200 pixels each. Because our network is only 

compared through variations of its own hyperparameters (cf. Sec. 4) and not with other methods, no test set 

is considered in our experiments. The 350 training images are pre-loaded before running the networks, 

because of the size of the images and because the time required to load the images would considerably slow 

down the training phase if done at each epoch. The networks were designed using PyTorch in Python. 

Two independent versions of the network described in Section 2.1 are created. One is a “detection” network 

that acts as a binary classifier: the three vehicle classes are combined and compared against the background 

(or non-vehicle) class. The other one, or the “classification” network, is a multi-class network in which the 

car and truck classes are compared against each other and the background, and the class “others” is ignored 

because it is severely underrepresented. 

All hyperparameters, except the activation functions, have been set for each version of the network. Both 

versions of the network have two layers. For both versions, we created sixteen models each using one 

activation function on the intermediate layer and one on the output layer. The activation functions used are 

ReLU, Leaky-ReLU (LReLU), sigmoid, and tanh. The models are denoted according to their activation 

functions, e.g. the model named “tanh-LReLU” uses tanh in the intermediate layer and Leaky-ReLU in the 

output layer. 

These models are compared over the Accuracy of the vehicle classes, calculated with True Positives, False 

Positives, and False Negatives as follows: Accuracy = TP/(TP+FP+FN). 

For both of these networks, if the accuracy obtained is sufficient, these networks will prove that the spectral 

information is pertinent and can be used to improve current detection and classification methods used in 

surveillance. Further analysis of these networks will also be conducted to understand the features extracted 

from the hyperspectral images. 
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3.0 DATA 

The images were acquired using the camera FireflEYE S185 from Cubert GmbH, which allows the 

acquisition of hyperspectral snapshots. This camera acquires instantaneously 138 bands from 450 to 998nm 

(from blue to NIR). However, the first band (450nm) and the last twelve bands (954-998nm) are noisy and 

might introduce errors when analyzed. The camera has a spatial resolution of 50x50 pixels, which can be 

increased by pan-sharpening using the panchromatic 1000x1000 channel of the camera. This processing is 

needed because labeling is not efficient with 50x50 pixels images. However, because the increase in 

resolution by pan-sharpening is virtual, it can introduce artifacts and distortions depending on the ratio of the 

increase in resolution. To allow more efficient labeling while limiting the number of artifacts introduced, we 

increase the spatial resolution of the images to 200x200 pixels. We acquired images of moving vehicles. 

These images have been acquired with various azimuth and inclination angles, distance, and lighting 

conditions. These variations aim to diversify the dataset for it to be more flexible in the neural networks. All 

images were acquired from above the vehicles, up to an inclination of 70 degrees. 

4.0 DATA PROCESSING 

To facilitate the labeling processing and to have a better visual representation of the content of the images, 

color (RGB) images are reconstructed from the hyperspectral data. 

Bands over 780nm are removed because they belong to the infrared domain. Red, green, and blue channels 

are interpolated from the remaining bands, depending on their wavelengths. Due to the unequal 

representation of red, green, and blue in hyperspectral images and due to the camera not acquiring bands part 

of the blue wavelengths, the three channels are then normalized separately. The risk of normalizing each 

channel separately is the over-representation of some of the channels. On another side, only applying a 

combined normalization leads to a sub-representation of some of the channels. 

Examples of reconstructed images are shown in Fig. 2. The sky was visually brighter than the gray tone that 

can be seen, due to the lack of blue wavelengths (380-450nm), in the reconstruction in Fig. 2right. 

Figure 2: Examples of the color reconstruction of images, taken from multiple angles, of (left) a 
car, (center) a truck, and (right) multiple vehicles. 

The pixels of the images of this dataset have been classified into four classes: background, car, truck, and 

“others”. The last class includes all under-represented vehicles. The pixels that do not contain part of a 

vehicle (i.e. neither car, truck, or “others”) are labeled as background. 
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The labeling was performed in two steps. First, a pre-trained neural network, Mask-RCNN2 is used to 

segment images automatically according to the type of vehicle. This method makes large errors in the shape 

and labels of the vehicles but greatly reduces the amount of manual labeling to be done. The second step 

consists of a manual classification to correct the errors induced by Mask-RCNN. 

The result of this labeling is a 2D ground-truth classification map with the same resolutions as those of the 

spatial resolutions of the input hyperspectral image. The classes background, car, truck, and “others” 

represent respectively 79%, 6%, 14%, and under 1% of the pixels of the labeled images. The main reason for 

the difference between the representation of cars and trucks is the fact that trucks are covering larger portions 

of the images. 

5.0 LEARNING 

5.1 Detection 

As described in Section 2, the networks consist of one intermediate layer and one output layer. For the 

detection network, the number of neurons of the intermediate layer was arbitrarily set to 15 and the output 

layer contains 1 neuron. The optimization algorithm used is the stochastic gradient descent with a learning 

rate of 0.005 and a momentum of 0.9. Previous experiments showed that networks converged too slowly 

with a learning rate of 0.001 and the momentum is set arbitrarily to prevent the networks from getting stuck 

in a local minimum. The loss function is the Mean-Squared Error (MSE). 

Figure 3: Trend curves of the sixteen vehicle detection models over 800 epochs. Each color 
corresponds to a different model. 

In Fig. 3, the evolution over epochs follows four different trends. First, three models suffer from the 

vanishing gradient problem and classify all pixels as background. Second, three other models manage to 

reach around 23% accuracy on vehicles. However, after reaching this score, the models fail to increase more. 

Third, five models first reach 23% accuracy on vehicles quickly, then stabilize for hundreds of epochs before 

suddenly increasing again to reach over 50%. Finally, the five other models reach this 50% in the first 100 

epochs. 

In these trends, we can notice two thresholds in the vehicle class, the first being 23%, and the second 50%. 

These thresholds mean that there are large amounts of pixels with a similar spectral intensity being shifted 

2 “Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow”, 

https://github.com/matterport/Mask_RCNN, last visited 2022-04-25. 

https://github.com/matterport/Mask_RCNN
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from one class to another. The second threshold will be analyzed in section 6.2. Due to the loss function 

being the MSE, the accuracy often decreases as the network tries to minimize the variations rather than only 

the error rate. 

Although that these models could be improved further given more epochs and a better fine-tuning of the 

hyperparameters, these results are already sufficient to be able to analyze the features extracted by the 

network. Because the performances of the models have high variations, it is not possible to identify a distinct 

“best” network here. As such, the model we decided to analyze is the one that obtains the best accuracy 

(55.51%) on the vehicle class at 800 epochs. 

5.2 Classification 

For the classification network, the number of neurons of the intermediate layer was arbitrarily fixed to 23 

and the output layer contains 3 neurons, one for each class, the “others” class being ignored due to its sub-

representation. The argmax function is applied to the output of the network so that the output class is the 

class associated with the output neuron holding the highest value. The optimization algorithm chosen for this 

network was also the stochastic gradient descent with a learning rate of 0.005 and a momentum of 0.9. 

Previous networks converged too slowly with a learning rate of 0.001 and the momentum is set arbitrarily to 

prevent the networks from getting stuck in a local minimum. The three classes being unequally represented, 

the chosen loss function is the Cross-Entropy, which enables the association of a weight with each class. The 

effect on the classification is that the underrepresented classes are less neglected. 

Figure 4: Trend curves of the sixteen (left) car and (right) truck classification models over 800 
epochs. Each color of each subfigure corresponds to a different model. 

The evolution over 800 epochs of the trends of the sixteen classification models can be seen in Fig. 4. As 

with vehicle detection, some models fail to classify any pixel as either a car or a truck. Another model 

originally suffers from the same problem but it manages to classify correctly pixels as a car after more than 

550 epochs. Some models fail to recognize the truck class and yet other models fail to recognize the car 

class. Another model slowly learns to recognize cars but does not manage to exceed 3% accuracy in 800 

epochs. Finally, six of the sixteen models manage to reach at least 20% on the car class and 30% on the truck 

class under 100 epochs. The model considered the “best” classification model as of 800 epochs is the one 

reaching 31.04% accuracy on cars and 33.51% on trucks, surpassing all the other models by over 1.5% 

accuracy on both classes. 



Evaluation of the Operational Contribution of the Use of Neural Networks on 
Hyperspectral Images for the Benefit of Airborne Surveillance 

12 - 8 STO-MP-SET-312

6.0 DATA ANALYSIS 

Because the models analyze the spectral dimension, the data of the intermediate and output layers can be 

visualized as 2D spatial images. We first run part of the layers on every pixel of an image. For each pixel, we 

normalize the values of all the neurons of a layer to the [0, 1] interval. Finally, the values are converted to the 

jet colormap; hence the lower values are visualized as a dark blue and the highest as a dark red, going 

through other colors including cyan, green and yellow. 

Using this, 16 images can be obtained on the detection models and 26 on the classification models: 15 or 23 

images corresponding to the activation of the neurons of the intermediate layer, 1 or 3 images to the 

activation of the output layer. 

The intermediate layer images show the features extracted from the hyperspectral image, while the output 

layer images show the assertiveness of the network about its classification of each pixel. The weights 

between the layers have also been extracted to analyze the impact of each neuron on the classification. Due 

to the excessive number of weights between the input and the intermediate layers, only the weights between 

the intermediate and output layers are disclosed in this paper. 

6.1 Detection - Best model 

We first analyzed the “best” detection model selected in Sec. 5.1, the LReLU-tanh. The color reconstruction 

and the activation images of two test hyperspectral images can be found in Figs. 5 and 6. 

Figure 5. Best detection model car example: (up left) Color reconstruction. (up right) Activation 
of the output neuron. (down) Activation of four of the 15 intermediate neurons. 



Evaluation of the Operational Contribution of the Use of Neural Networks on 
Hyperspectral Images for the Benefit of Airborne Surveillance 

STO-MP-SET-312 12 - 9 

Figure 5. Best detection model truck example: (up left) Color reconstruction. (up right) 
Activation of the output neuron. (down) Activation of four of the 15 intermediate neurons. 

Neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Weight -0.8 -0.2 -0.8 0.4 0.5 0.0 -0.1 0.3 0.1 0.0 3.4 2.1 -0.7 0.6 0.2 

Table 1: Weights between the intermediate and output layers of the best detection model. 

The weights associated with each intermediate neuron toward the output neuron are referenced in Tab. 1. As 

there is only one output neuron, the pixels with an output value closest to 0 are classified as background and 

closest to 1 as a vehicle. Hence, if the value of an intermediate neuron is positive, a negative weight will 

make it shift toward the background class and a positive weight toward the vehicle class. This relation is 

reversed if the value of the intermediate neuron is negative. However, the activation of the first layer is 

LReLU, meaning that these negative values are overall smaller than the positive ones. Here, neurons 11, 12, 

1, and 3 possess the highest weights. 

Neurons 1 and 3, which both have negative weights toward the output layer, distinguish part of the 

vegetation and mostly ignore both vehicles and roads. According to the weights between the input and the 

intermediate layer, these neurons mostly use the bands around 550nm (green) and 750nm (red/NIR) while 

rejecting the bands around 950nm (NIR). However, these neurons also respond strongly to the truck, due to 

its highly reflective white paint. 

Neuron 11 distinguishes particularly zones of low intensity. As such, this neuron is adapted for the detection 

of shadows, which in these images mostly appear on vehicles. For this reason, this neuron is misguiding the 

classification of background shadow elements, such as roads or security fences. 

Neuron 12 reacts highly to the 600-700nm (red) bands and close to 950nm (NIR) and rejects other bands. 

The areas appearing the most on this neuron are the ones with the highest luminosity: the white paint of the 

truck, the white lines of the road, and the areas reflecting the sun strongly on the car. 
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Six other neurons appear almost empty on test images and are poorly weighted by the output neuron. Finally, 

no useful information has been extracted from the other neurons, despite the medium weight associated with 

most of them. 

6.2 Detection - Threshold 

To understand the origin of this threshold in the classification of the vehicle class, we analyzed the network 

LReLU-sigmoid both before (300 epochs) and after (800 epochs) overcoming this threshold. 

Figure 7. Threshold detection model car example: (up) Output classifications of the model after 
(left) 300 and (right) 800 epochs, vehicle in white and background in black. (down) Activation of 

four of the 15 intermediate neurons after (left) 300 and (right) 800 epochs. 
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Figure 8. Threshold detection model truck example: (up) Output classifications of the model 
after (left) 300 and (right) 800 epochs, vehicle in white and background in black. (down) 
Activation of four of the 15 intermediate neurons after (left) 300 and (right) 800 epochs. 

Neuron 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Weight 

(ep 300) 

-0.6 -0.1 0.0 0.0 -0.2 0.5 -2.6 0.0 0.5 1.4 -0.1 2.0 0.2 2.1 0.2 

Weight 

(ep 800) 

-1.3 -0.1 0.0 0.0 -0.3 2.2 -5.2 0.0 0.8 2.4 -0.1 3.6 -0.2 3.8 0.2 

Table 2: Weights between the intermediate and output layers of the detection model LReLU-
sigmoid trained over 300 and 800 epochs. 

The weights associated with each intermediate neuron toward the output neuron are referenced in Tab. 2. 

In both Figs. 7 and 8, there are few differences between neuron activation at 300 and 800 epochs. At 800 

epochs, the activation of neuron 7 is weaker on vegetation but, on the contrary, the activation of neurons 10, 

12, and 14 is stronger on vegetation and weaker on the truck. 

However, neuron 6 distinguishes itself from the others. This neuron doesn't differentiate roads from shadows 
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at 300 epochs but does at 800 epochs. The weights between the input layer and this neuron are either zero or 

slightly negative at 300 epochs, but greatly negative at 800 epochs. The weight between this neuron and the 

output layer has been multiplied by 4, while the weights of the other neurons have been multiplied by 2 at 

most, showing that this neuron has become much more significant in the classification. These criteria are 

similar to those of neuron 11 of the model analyzed in Sec. 5.1 and show that despite the models learning 

differently, both found that the shadows are valuable information for the classification. 

We conclude that the main differences between the output classifications of Figs. 7 and 8 (up) are the 

shadow areas, which are detected at 800 epochs but not at 300 epochs. The threshold trend curve in Fig. 3 is 

due to the shift of the classification of these shadow areas from background to vehicle. 

6.3 Classification - Best model 

We then analyzed the best classification network, the tanh-LReLU. The images extracted from the neurons 

of this model with two examples are shown in Figs. 9 and 10. In the output classification, a background pixel 

is shown as black, car as gray, and truck as white. The weights between the intermediate and output layers 

are shown in Tab. 3. 

Figure 9. Best classification model car example: (up) Activation of seven of the 23 intermediate 
neurons. (down left) Activation of the 3 output neurons. (down right) Output classification, car in 

gray, truck in white, and background in black. 
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Figure 10. Best classification model truck example: (up) Activation of seven of the 23 
intermediate neurons. (down left) Activation of the 3 output neurons. (down right) Output 

classification, car in gray, truck in white, and background in black. 

Neuron 1 2 3 4 5 6 7 8 9 10 11 12 

Background -0.9 -1.6 0.9 0.4 0.9 -1.5 1.7 0.2 0.8 4.1 0.2 0.0 

Car -1.0 0.7 -0.5 -0.1 -0.3 0.7 -0.6 -0.6 0.3 0.3 -0.4 -0.1 

Truck -0.6 -0.1 0.2 0.8 0.1 -0.3 0.2 0.1 0.4 0.4 -0.1 -0.1 

Neuron 13 14 15 16 17 18 19 20 21 22 23 

Background 0.6 -1.7 -1.2 -2.6 -0.9 0.9 0.5 0.4 -0.2 1.3 4.8 

Car 0.3 1.6 0.8 0.8 -2.0 -1.6 0.0 -1.6 -0.6 -1.5 -0.1 

Truck 0.8 0.5 0.0 -0.5 -1.3 -0.3 0.2 -0.4 0.2 -0.7 -0.2 

Table 3: Weights between the intermediate and output layers of the classification model tanh-

LReLU trained over 800 epochs. 
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The first activation of this model is tanh, so the values of the intermediate layer neurons range from -1 to 1 

and are centered on 0. This means that, with the jet colormap, the values obtained from the tanh that are 

closer to 0 are colored green, negative values shift the color toward blue and positive values toward red. 

Finally, the class associated with a pixel is the class corresponding to the neuron with the highest activation 

for this pixel, i.e. the color closest to dark red. 

Therefore, neuron 1, despite its visual similarity with the shadow neurons of the previous models, associates 

stronger negative attention to vegetation and luminous elements. All three output neurons are weighting this 

neuron negatively, meaning that they are promoting high-intensity areas and vegetation. Surprisingly, the 

class giving the strongest weight to this neuron is the car class, though car regions contain mostly low-

intensity pixels. 

Neurons 2, 14, 15, and 16 are given high positive weights by the car class, are rejected by the background 

and ignored by the truck class. This allows the car class to value highly the luminous regions while not 

according too much importance to vegetation due to neuron 14. This effect is reversed for the background 

class which then neglects luminous regions. 

The background class also associates high weights to neurons 10 and 23, detecting highly non-shadow areas 

(i.e. vegetation, high-, and mid-intensity areas). 

The informations extracted by the neurons of the intermediate layer are low-, mid-, and high-intensity areas 

and vegetation. With this information, the model can obtain satisfying classification rates on both vehicle 

classes. On the background output neuron, most parts of the vehicles are rejected while vegetation and most 

road (or mid-intensity) areas have high values. However, this neuron also rejects part of the background 

elements such as security fences and white lines, due to their respectively very low and very high luminosity. 

Due to the car and truck containing both mostly shadowy areas, these areas have similar values on car and 

truck classification. However, these areas are still considered to be a car by the network, and none of the 

models in Fig. 4 is able to classify shadow areas as a truck, because doing so would highly reduce the 

accuracy on the car class.  

7.0 CONCLUSION 

In this paper, we created our own dataset of hyperspectral images of vehicles, the first to our knowledge. The 

results of the networks are satisfying, considering the fact that only the spectral dimension was used. 

However, it would be interesting to compare such networks with similar networks applied to color images to 

observe the contribution of hyperspectral images compared to color images. We analyzed and found the 

most discriminant features extracted by the neural networks: vegetation and high-, mid-, and low-intensity 

areas. These features, appearing respectively green/yellow, white, gray, and black, seem to be extractible 

from color images. However, though the networks still make errors on pixels that appear similar to the road, 

the tires are mostly classified as vehicles. Furthermore, the networks are able to identify the vegetation not 

only through green and red but also NIR wavelengths. 

In the future, further training networks on more specific areas like tires and roads or through new labeling 

might allow the extraction of new features. Training the networks through more epochs and modifying more 

hyperparameters would allow to obtain better results and maybe extract new features. Finally, using 

networks to analyze simultaneously spatial and spectral contribution in hyperspectral image classification 

would allow the extraction of new information and possibly make it comparable to state-of-the-art color 

image segmentation systems which benefit highly from spatial information. 
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Furthermore, more focus should be given to the analysis of 1D spectra and 3D hyperspectral images for 

material discrimination and identification. The impact of illumination conditions on spectral characteristics 

should also be studied. Calibration methods should be proposed to improve the performance of material 

discrimination and identification under unstable conditions. 

REFERENCES 

[1] R. B. Morrison and M. E. Cooley, “Assessment of flood damage in Arizona by means of ERTS-1 

imagery,” Goddard SFC Symp. on Significant Results obtained from the ERTS-1, vol. 1, Sect. A and B, 

Denver, CO, USA, pp. 755-760, 1973. 

[2] C.I. Chang, Q. Du, T. Sun and M.L. G. Althouse, “A joint band prioritization and band-decorrelation 

approach to band selection for hyperspectral image classification,” IEEE Trans. Geosci. Remo. Sens., vol.37, 

no.6, pp.2631–2641, Nov. 1999. 

[3] D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17–

28, Jan. 2002. 

[4] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical Optics, Jan. 2014, 

DOI. 10.1117/1.JBO.19.1.010901. 

[5] L. Zhu, Y. Chen, P. Ghamisi and J.A. Benediktsson, “Generative adversarial networks for hyperspectral 

image classification,” IEEE Trans. Geosci. Remote Sens., 56 (9) (2018), pp. 5046-5063. 

[6] A. Signoroni, M. Savardi, A. Baronio and S. Benini, “Deep Learning Meets Hyperspectral Image 

Analysis: A Multidisciplinary Review,” Journal of Imaging, DOI. 10.3390/jimaging5050052, Apr. 2019. 

[7] J. B. Peterson, F. E. Goodrick and W. N. Melhorn, “Delineation of the boundaries of a buried preglacial 

valley with Landsat-l data,” Proc. of NASA Earth Resources Survey Symp., vol. 1-A: Agr., Environment; pp. 

97-103, 1975. 

[8] H. Akbari et al., “Cancer detection using infrared hyperspectral imaging,” Cancer Sci., 102(4), pp. 852–

857, 2011. 

[9] H. V. Nguyen, A. Banerjee and R. Chellappa, “Tracking via object reflectance using a hyperspectral 

video camera,” CVPR Workshop, 2010. 

[10] M. Uzair, A. Mahmood and A. Mian, “Hyperspectral face recognition using 3D-DCT and partial least 

squares,” BMVC, pp. 57.1–57.10, 2013. 

[11] M. Uzair, A. Mahmood and A. Mian “Hyperspectral face recognition with spatiospectral information 

fusion and PLS regression,” IEEE Trans. Image Process., vol. 24, no. 3, pp. 1127–1137, Mar. 2015. 

[12] A. Mian and R. Hartley “Hyperspectral video restoration using optical flow and sparse coding,” Optics 

Express, vol. 20, no. 10, pp. 10658–10673, 2012. 

[13] Z. Khan, F. Shafait and A. Mian, “Hyperspectral imaging for ink mismatch detection,” Proc. of the 

ICDAR, pp. 877-881, DOI. 10.1109/ICDAR.2013.179, 2013. 

[14] B. Guo, S. R. Gunn, R. I. Damper and J. D.B. Nelson, “Band selection for hyperspectral image 

classification using mutual information,” IEEE Geosci. Remote Sens. Letters, vol. 3, no. 4, pp. 522-526, Oct. 



Evaluation of the Operational Contribution of the Use of Neural Networks on 
Hyperspectral Images for the Benefit of Airborne Surveillance 

12 - 16 STO-MP-SET-312

ENTER CLASSIFICATION 

2006. 

[15] S. Jia, Z. Ji, Y. Qian and L. Shen, “Unsupervised Band Selection for Hyperspectral Imagery 

Classification Without Manual Band Removal,” IEEE Journal Applied Earth Observ. and Remote Sens., vol. 

5, no. 2, pp. 531-543, 2012. 

[16] W. Zhao and S. Du, “Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A 

Dimension Reduction and Deep Learning Approach,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 

4544-4554, 2016. 

[17] H. Wu and S. Prasad, “Convolutional recurrent neural networks for hyperspectral data classification,” 

Remote Sens., vol.9, no.3, DOI. 10.3390/rs9030298, Mar. 2017. 

[18] L. Mou, P. Ghamisi and X. X. Zhu, “Deep recurrent neural networks for hyperspectral image 

classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3639–3655, Jul. 2017. 

[19] Y. Guo, S. Han, H. Cao, Y. Zhang and Q. Wang, “Guided filter based Deep Recurrent Neural Networks 

for Hyperspectral Image Classification,” Procedia Computer Science, vol. 129, pp. 219-223, 2018. 

[20] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin 

of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133, Dec. 1943. 

[21] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-Based Learning Applied to Object 

Recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. 

[22] A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolutional 

Neural Networks,” NIPS, 2012. 

[23] C. Dong, C. C. Loy and K. He, “Image Super-Resolution Using Deep Convolutional Networks,” IEEE 

Trans. PAMI, vol. 38, no. 2, pp. 295-307, June 2015. 

[24] V. Jain and S. Seung “Natural image denoising with convolutional networks,” NIPS, pp. 769-776, 2009. 

[25] C. Harris and M. Stephens “A combined corner and edge detector,” Alvey Vision Conference, pp. 147-

151, 1988. 

[26] T. Young, D. Hazarika, S. Poria and E. Cambria, “Recent trends in deep learning based natural language 

processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55-75, 2018. 

[27] S. E. Kahou, V. Michalski, K. Konda, R. Memisevic and C. Pal, “Recurrent Neural Networks for 

Emotion Recognition in Video,” Proc. International Conf. on Multimodal Interaction, pp. 467-474, Nov. 

2015. 

[28] H. Yu, J. Wang, Z. Huang, Y. Yang and W. Xu, “Video Paragraph Captioning Using Hierarchical 

Recurrent Neural Networks,” IEEE CVPR, pp. 4584-4593, 2016. 

[29] N. Srivastava, E. Mansimov and R. Salakhutdinov “Unsupervised Learning of Video Representations 

using LSTMs,” ICMI, 2015. 

[30] R. Socher, B. Huval, B. Bhat, C. D. Manning and A. Y. Ng, “Convolutional-Recursive Deep Learning 

for 3D Object Classification,” NIPS, 2012. 

[31] Z. Zuo, B. Shuai, G. Wang, X. Liu, X. Wang, B. Wang and Y. Chen, “ Convolutional Recurrent Neural 



Evaluation of the Operational Contribution of the Use of Neural Networks on 
Hyperspectral Images for the Benefit of Airborne Surveillance 

STO-MP-SET-312 12 - 17 

Networks: Learning Spatial Dependencies for Image Representation,” IEEE CVPR, pp. 18-26, 2015. 

[32] F. Melgani and L. Bruzzone, “Classification of Hyperspectral Remote Sensing Images With Support 

Vector Machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790. 

[33] G. Camps-Valls and L. Bruzzone, “Kernel-Based Methods for Hyperspectral Image Classification,” 

IEEE Trans. Geosci. Remo. Sens., vol.43, no.6, pp.1351-1362, 2005. 

[34] G. Mountrakis, J. Im and C. Ogole “Support vector machines in remote sensing: A review,” ISPRS 

Journal Photo. Remo. Sens., vol.66, no.3, pp.247-259, May 2011. 

[35] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot and J. C. Tilton, “Advances in spectral-

spatial classification of hyperspectral images,” Proceedings of the IEEE, vol. 101, no. 3, pp. 652-675, Mar. 

2013. 

[36] L. Mou, L. Bruzzone and X.X. Zhu, “Learning spectral-spatial oral features via a recurrent 

convolutional neural network for change detection in multispectral imagery,” IEEE Trans. Geosci. Remo. 

Sens., vol. 57, no. 2, pp. 924-935, Feb. 2019. 

[37] S. Goferman, L. Zelnik-Manor and Ayellet Tal, “Context-Aware Saliency detection,” IEEE Trans. 

Pattern Analysis and Machine Intelligence, vol. 34, no. 10, pp. 1915-1926, Oct. 2012. 

[38] Q. Yan, L. Xu, J. Shi and J. Jia, “Hierarchical Saliency Detection,”, IEEE CVPR, pp. 1155-1162, 2013. 

[39] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image 

Recognition,” ICLR, 2015. 



Evaluation of the Operational Contribution of the Use of Neural Networks on 
Hyperspectral Images for the Benefit of Airborne Surveillance 

12 - 18 STO-MP-SET-312




